Limiting climate gas emissions from agricultural land. What can the farmer do?

Kristoffer Piil, SEGES Plant Innovation

We all know the problem!

- Agriculture contributes 12% of climate gas emissions at the EU level
- Fraction is increasing as energy production, industry and transportation is gradually shifting to renewable energy sources

We all know the problem!

SEGES

Getting credit for what you do!

- 1% of applied fertiliser N is emitted as N₂O
- No emission factors for use of nitrification inhibitors
- No emission factors for any other management factor

Only two options on the table → Increase NUE or take land out of production

• More science needed for differentiated emissions factors!

What are the driving pressures that can make farmers implement changes?

• Financial benefit

• Top down regulation

DANISH CROW

• Demand from consumers (CSR)

The tool box

- Utilizing applied N efficiently in particular manure N
- Nitrification inhibitors
- Changing cropping systems
- Biogas

SEGES

- Abandoning farming of organic soils (or other land)
- Storing carbon in soils

How to motivate the farmer to use these measures?

Utilizing manure

- 1% of N input is emitted as N₂O → increase your NUE
- We know how to increase NUE of manure and have know for 25 years

Slurry and manure is gold: N-price: 1,2 euro/kg P-price: 1,9 euro/kg K-price: 0,9 euro/kg +C-effect

NPK, cattle slurry: 7,7 euro/t

Source: Catchment sensetive farming

Utilizing manure – The Danish case

- Harmony between amount of land and number of animals nitrate directive
- Ban on autumn and winter application
- Application in growing crops timing and splitting application
- Application technology

SEGES

Accounting for it correctly in nutrient management plans

What is holding NUE back at EU level?

Why are we not doing it already:

- Storage capacity and equipment is expensive eats up the financial benefit of better utilization
- Lack of regulation (technology and close periods)
- Not enough awareness lack of advice and good nutrient management plans

Help the farmer comply:

- Financial support for building storage capacity
- Slurry close periods in northern climates
- Nutrient management plans (possibly mandatory)
- Consumer pressure for sustainable production
 seges
- Smart and easy decision support tools

Nitrification inhibitors

- Reduces N₂O emissions by 30-50%
- Increases yield on sandy soils, in particular in row crops – but only enough to pay for itself or give slight financial benefit
- No yield effect on heavier soils \rightarrow cost for the farmer
- Concerns about residues in groundwater and surface water bodies

How to implement:

- Financial support schemes, making it mandatory in mineral ammonia fertiliser and manure
- Effect will not show up in national emissions budget!

Change in cropping system

S

- Change to systems with high org C input to soil
- Must be with low N input to offset the effect of high N input
- High C:N ratio crops with low N input

Changing to a different cropping system

Biomass category

Reduction potential from changing cropping system

 The GHG emissions reductions are mainly due to substitution of fossile fules. Hence they are not ascribed to the agricultural sector!

Consumer pressure – Arla climate check

Source: Arla

Arla Climate check visualizes where the farmer can save money and decrease climate gas emissions

			Arla, SDM		
Key figures	Your farm, earlier	Your farm, Now	10-90% percentile	By a change of in key figure	Climate foot print is changed by
Fodder use, kg DM/kg ECM	0,9	0,82	0,82-1,05	-0,1	-0,08
Fodder utilization, %	30	23	23-30	+1	-0,01
Weight gain kg/ cow	193	242	213-378	+100	-0,05
% Roughage	74	64	51-74	+10	-0,02
Weight gain kg/ cow	6,4	14,2	4,9-10,0	+1	-0,004
Area use, m²/kg ECM	0,53	0,43	0,52-1,14	-0,1	-0,004
Electricity, kWh/kg ECM	0,066	0,053	0,056-0,129	-0,01	-0,004
Diesel, I/kg ECM	0,023	0,024	0,015-0,029	-0,01	-0,02
N fertilizer, kg N pr. ha	174	220	100-250	-10	-0,08

SEGES

Conclusions

- NUE can be increased and this will lower climate gas emissions but it will only happen if the farmer has an incentive
- Changing cropping systems can contribute
- Incentives can be financial or through consumer or buyer focus on climate effectiveness in some cases an alternative could be top down regulation
- It is an obstacle for changing land management, that only N input is counted in emissions → detailed emissions factors are needed if agriculture is to achieve reduction goals

